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Abstract
Monte Carlo simulations using the newly proposed Wang–Landau algorithm
together with the broad histogram relation are performed to study the
antiferromagnetic six-state clock model on the triangular lattice, which is
fully frustrated. We confirm the existence of the magnetic ordering belonging
to the Kosterlitz–Thouless (KT)-type phase transition followed by the chiral
ordering which occurs at slightly higher temperature. We also observe the
lower temperature phase transition of KT type due to the discrete symmetry
of the clock model. By using the finite-size scaling analysis, the higher KT
temperature T2 and the chiral critical temperature Tc are respectively estimated
as T2 = 0.5154(8) and Tc = 0.5194(4). The results are in favour of the double
transition scenario. The lower KT temperature is estimated as T1 = 0.496(2).
Two decay exponents of KT transitions corresponding to the higher and lower
temperatures are respectively estimated as η2 = 0.25(1) and η1 = 0.13(1),
which suggests that the exponents associated with the KT transitions are
universal even for the frustrated model.

PACS numbers: 05.70.Jk, 75.10.Hk, 75.40.Mg, 64.60.Fr

1. Introduction

Frustration is one of the interesting subjects in statistical physics, mainly because it can
induce additional symmetry and lead the system to display rich low-temperature structures.
The so-called two-dimensional (2D) fully frustrated XY models have attracted an extensive
investigation in the last two decades [1–17]. Due to the frustration the systems possess
additional discrete reflection symmetry Z2, as well as from the global spin rotation symmetry
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U(1). The breakdown of these symmetries is the onset of two types of phase transitions,
namely one corresponding to the magnetic transition of Kosterlitz–Thouless (KT) type
[18, 19] and the other to the chiral transition. Whether these transitions are decoupled or
occur at the same temperature has long been a controversy [4–10, 12–17]. Another debated
issue is whether the universality class of the chiral ordering belongs to the Ising universality
class or not [5–7, 17].

The system has a corresponding physical realization on a planar array of coupled
Josephson junctions in a transverse magnetic field [20–23] and discotic liquid crystals [24].
As a 2D frustrated XY system, two lattice systems are frequently studied numerically. The
first one is the square lattice where the interactions can be a regular mixture of ferromagnetic
(F) and antiferromagnetic (AF) couplings (Villain model) [1–11, 15]. The second one is the
AF XY model on the triangular lattice [2, 4, 8, 11–17].

As for the 2D XY model, the effect of the q-fold symmetry-breaking fields is an interesting
subject [25]; that is essentially the same as treating the q-state clock model, where only the
discrete values are allowed for the angle of the XY spins. The U(1) symmetry of the XY
model is replaced by the discrete Cq symmetry in the q-state clock model. It was shown [25]
that the 2D q-state clock model has two phase transitions of KT type at T1 and T2 (T1 < T2)

for q > 4. There is an intermediate XY-like phase between a low-temperature ordered phase
(T < T1) and a high-temperature disordered phase (T > T2). It is quite interesting to
investigate the effect of the q-fold symmetry-breaking fields in the case of the fully frustrated
XY model. Quite recently, Noh et al [26] studied the AF six-state clock model on the triangular
lattice using the Metropolis Monte Carlo simulation because of the experimental relevance to
CF3Br monolayers physisorbed on graphite [27]. However, they did not pay attention to the
lower temperature phase transition of KT type.

It is to be noted that the existing controversy involves very fine values. Most studies
claiming single transition scenario still do not exclude the possibility of two very close critical
temperatures. Meanwhile, the studies in favour of double transition scenario always found
that two critical phase transitions occur at slightly different temperatures. Therefore, it is
desirable to obtain precise numerical information. Recently, much progress has been made
in the development of efficient algorithms of the Monte Carlo simulation. Especially, several
attempts have been proposed for the Monte Carlo algorithms to calculate the energy density of
states (DOS) directly. Examples are the multicanonical method [28, 29], the broad histogram
method [30], the flat histogram method [31, 32] and the Wang and Landau method [33]. All
of these algorithms use the random walk in the energy space.

In this paper we report our Monte Carlo study on the AF six-state clock model on the
triangular lattice. The ground state (GS) of the AF six-state clock model on the triangular
lattice has the same structure as the AF XY model; therefore, this model is regarded as a
commensurate discrete model for the fully frustrated XY model. On the other hand, the
six-state clock model on the square lattice (Villain model) has different GS configurations
since there exist extra degeneracies. The presence of such extra degeneracy may bring about
another interest in the fully frustrated six-state clock model. However, we will not cover such
possibility in the present study. The XY Villain and the eight-state clock Villain models are
commensurate because they have the same GS configuration.

For the Monte Carlo method, we employ the Wang–Landau algorithm [33], and the
energy DOS is refined by the use of the broad histogram relation [34, 35]. The fact that
the energy of the six-state clock model is represented by the multiple of J/2, where J is the
coupling constant, is another supporting factor for the study of the six-state clock model; it
is convenient to treat discrete energy in the Monte Carlo simulation of calculating the DOS
directly.
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Figure 1. A ground-state configuration of the AF six-state clock model on the triangular lattice
of size 6 × 6. Spins are represented by arrows. Sites belonging to the same sublattice have the
same orientation of spins. The + and − signs indicate the handedness of the local chiralities. The
ground state has 12-fold degeneracy.

The rest of the present paper is organized as follows: in the next section we define the
model and briefly explain the simulation method. Details of the calculation and results will
be presented in section 3. The last section is devoted to the concluding remarks.

2. Model and simulation method

2.1. Model and order

The XY spin model is written with the Hamiltonian

H =
∑
〈ij〉

JijSi ·Sj =
∑
〈ij〉

Jij cos(θi − θj ) (1)

where 〈ij 〉 denotes the summation over nearest-neighbour interactions, Si a unit planar spin
vector occupying the ith site, and θi the angle associated with the ith spin. Here, we mainly
study the six-state clock model; therefore the angle takes discrete values, θi = 2πp/6 with
p = 0, . . . , 5. The frustration is conveyed by Jij . For the Villain model on the square lattice
this can be set by taking regular mixture of F and AF couplings. For the triangular lattice on
the other hand, Jij are simply set to be uniform AF couplings, Jij = J > 0, so that the system
becomes fully frustrated.

Hamiltonian (1) is invariant under the symmetries of the global spin rotation U(1) and the
global spin reflection Z2. The breaking of these symmetries is expected to cause two kinds
of ordering, which respectively correspond to magnetic ordering and chiral ordering. The GS
configuration is well known as 2π/3-configuration, where two neighbouring spins align in
2π/3 difference in angle, which is shown in figure 1. We decompose the lattice into three
interpenetrating sublattices for studying magnetic order. A site in a triangle belongs to one of
the sublattices, A,B or C. We assign the magnetic order parameter as

m2 = 3

N2

(
MA

2 + MB
2 + MC

2
)

(2)

where MA = ∑
i∈A Si is the magnetization of sublattice A and N is the number of spins;

MB and MC follow the same definitions for the sublattices B and C.
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To discuss the global spin reflection Z2, we deal with the chirality. The local chirality on
the elementary triangle is defined as

κi = 2

3
√

3

∑
j,k∈�

[Sj × Sk]
z
= 2

3
√

3

∑
j,k∈�

sin(θk − θj ) (3)

where the z component of the vector chirality is considered. The numerical factor in
equation (3) is chosen such that the maximum of the absolute value is one. In the GS
configuration depicted in figure 1, the local chirality takes a checkerboard pattern of the right-
handed (positive) orientation and the left-handed (negative) orientation. Then, the staggered
chirality

κ = 1

2N

∑
i

(−1)iκi (4)

becomes the order parameter for the Z2 symmetry breaking transition.
The GS configuration has 12-fold degeneracy which is induced by the discrete global spin

rotation symmetry C6 with six-fold and by Z2 symmetry with two-fold. The number of this
degeneracy is used as one of the check conditions in the calculation of energy DOS.

2.2. Simulation method

We use the Monte Carlo method to calculate the energy DOS directly to obtain precise
numerical information. First, we briefly describe the Wang–Landau algorithm [33]. This
algorithm is similar to the multicanonical method (entropic sampling) of Lee [29], the broad
histogram method [30] and the flat histogram method [31, 32]; the idea is based on the
observation that performing a random walk in energy space with a probability proportional
to the reciprocal of the DOS, 1/g(E), will result in a flat histogram of energy distribution.
The Wang–Landau method introduces a modification factor to accelerate the diffusion of the
random walk in the early stage of the simulation. Since the DOS is not known at the beginning,
it is simply set g(E) = 1 for all energy E. The transition probability from energy E1 to E2

reads

p(E1 → E2) = min

[
g(E1)

g(E2)
, 1

]
(5)

and the DOS g(E) is iteratively updated as

ln g(E) → ln g(E) + ln fi (6)

every time the state is visited. The modification factor fi is gradually reduced to unity by
checking the ‘flatness’ of the energy histogram; the histogram for all possible E is not less
than some value of the average histogram, say, 0.80.

We also use the broad histogram relation for getting a refined DOS. In proposing the
broad histogram method, Oliveira et al [30] paid attention to the number of potential moves,
or the number of the possible energy change, N(S,E → E′), for a given state S. The total
number of moves is∑

�E

N(S,E → E + �E) = N (7)

for a single spin flip process of the Ising model simulation. The energy DOS is related to the
number of potential moves as

g(E)〈N(S,E → E′)〉E = g(E′)〈N(S ′, E′ → E)〉E′ (8)
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Figure 2. Energy DOS of system size L = 48. The energy is represented in units of J/2.

where 〈· · ·〉E denotes the microcanonical average with fixed E. This relation is shown to be
valid on general grounds [34, 35], and we call equation (8) the broad histogram relation. We
measure the average of the potential move, 〈N(S,E → E′)〉E , and use this information for
getting a better estimate of the energy DOS. It was stressed [36, 37] that N(S,E → E′) is
a macroscopic quantity, which is the advantage of using the number of potential moves. We
should also note that the broad histogram relation does not depend on the particular dynamic
rule one adopts, and the microcanonical averages of the potential moves can be obtained by
any rule of Monte Carlo dynamics.

In order to reduce calculation time for larger system sizes, we break simulation into
several energy windows and perform random walk in each different range of energy. The
resultant pieces of the DOS are joined together and used to produce the thermal average with
the inverse temperature β through the standard relation

〈Q〉β =
∫
Q(E)g(E) e−βE dE∫

g(E) e−βE dE
. (9)

Using the parallel machine, we perform the measurements of the physical quantity Q up to
64 × 105 Monte Carlo steps. Also, we perform ten independent runs for each system size in
order to get better statistics and to evaluate statistical errors.

3. Results

3.1. Energy DOS and specific heat

Here we present the results for the AF six-state clock model on the triangular lattice. We have
treated the system with the linear sizes L = 24, 36, 48, 60 and 72. We apply the periodic
boundary conditions. We normalize the DOS by using the condition

∑
E g(E) = 6N , and the

degeneracy in the GS energy, g(EGS) = 12, is checked in order to confirm the accuracy of the
calculation. In figure 2, we show the energy DOS of system size L = 48 as an example. Here,
the energy is represented in units of J/2, and the GS energy is given by −(3/2)NJ .

The energy-dependent data of quantity Q(E) are used to calculate the thermal average
〈Q〉 by using equation (9). We calculate the specific heat per spin through the relation

C(T ) = 1

NkBT 2
[〈E2〉 − 〈E〉2] (10)

where kB is the Boltzmann constant.
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Figure 3. Temperature dependence of specific heat for system size L = 24, 36, 48, 60 and 72.

We show the temperature dependence of specific heat for different lattice sizes in
figure 3. The divergent peak around T � 0.52 in units of J/kB gives a clear sign of the
existence of second-order phase transition. We also observe a hump on the lower temperature
side around T � 0.48, which may be related to the transition of KT type. However, we should
study the magnetic and chiral orders for the detailed analysis of the phase transition.

3.2. Correlation ratio

The critical behaviour and the transition temperature can be investigated more precisely from
the evaluation of the order parameter or its corresponding correlation function. The magnetic
and chirality correlation functions are defined as the following:

G(r) = 〈Si · Si+r〉 (11)

γ (r) = 〈κiκi+r〉 (12)

where r is the fixed distance between spins. Precisely, the distance r is a vector, but we have
used a simplified notation.

Two of the present authors [38] showed that the ratio of the correlation functions with
different distances is a useful estimator for the analysis of the second-order phase transition
as well as for the KT transition, and this correlation ratio can be used for the generalization of
the probability-changing cluster algorithm [39].

At the critical point or on the critical line, the correlation function g(r) for an infinite
system decays as a power of r,

g(r) ∼ r−(D−2+η) (13)

where D is the spatial dimension and η the decay exponent. For a finite system in the critical
region, the correlation function depends on two length ratios,

g(r, t, L) ∼ r−(D−2+η)h(r/L,L/ξ) (14)

where ξ is the correlation length. Then, the ratio of the correlation functions with different
distances has a finite-size scaling (FSS) form with a single scaling variable,

g(r, t, L)

g(r ′, t, L)
= f (L/ξ) (15)

if we fix two ratios, r/L and r/r ′.
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Figure 4. Temperature dependence of ratios of the (a) magnetic and (b) chiral correlation functions.

In the present work, we set r = L/2 and r ′ = L/4 for two distances. Thus, we evaluate
the correlation ratios G(L/2)/G(L/4) and γ (L/2)/γ (L/4), where G and γ are referred
respectively to equations (11) and (12). It is important for two correlated spins to belong to the
same sublattice; since the fixed distances are set as r = L/2 and L/4, we choose the system
size as a multiple of 12.

3.2.1. Kosterlitz–Thouless transitions. We show the correlation ratios both for the (a)
magnetic and (b) chiral correlations in figure 4. From the temperature dependence of the
magnetic correlation ratio plotted in figure 4(a), we observe that the curves of different
sizes merge in the intermediate temperature range (T1 < T < T2), and spray out for the
low-temperature and high-temperature ranges. This behaviour is the same as that for the
unfrustrated six-state clock model [38], which suggests that there are two phase transitions of
KT type at T1 and T2. The hump on the lower temperature side in the specific heat, figure 3,
may correspond to the lower temperature KT transition at T1. The higher temperature KT
transition at T2 is not obvious from the specific heat plot as it is veiled by the divergent peak
due to the chiral transition.

We can make a FSS analysis based on the KT form of the correlation length, ξ ∝
exp(c/

√
t), where t = |T − TKT|/TKT. The L dependence of TKT(L) is given by

TKT(L) = TKT +
c2TKT

(ln bL)2
. (16)

Using the data of the magnetic correlation ratio R = G(L/2)/G(L/4) for different sizes, we
estimate two KT transition temperatures. We consider the size-dependent temperature that
gives the constant R. In figure 5, we plot TKT(L) as a function of l−2 with l = ln bL for the
best-fitted parameters in equation (16). For a fitting function we have used a quadratic function
in l−2 to include correction terms. The value of R has been set to be 0.86, 0.88 and 0.90 for the
determination of T2, whereas R has been set to be 0.99, 0.985 and 0.98 for T1. The data with
different R are represented by different marks in figure 5, but they are collapsed on a single
curve in this plot, which means that b depends on R in equation (16) and the difference of R
can be absorbed in the R dependence of b. We estimate the KT temperatures of the magnetic
order using equation (16) as

T2 = 0.5154(8) and T1 = 0.496(2)

where the numbers in the parentheses denote the uncertainty in the last digits. The estimate
of T2 is slightly lower than the estimate by Noh et al [26], 0.5175(3). It is due to the fact that
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Figure 5. Plot of (a) T2(L) and (b) T1(L) of the AF six-state clock model on the triangular lattice
for L = 24, 36, 48, 60 and 72, where l = ln bL. The data for R = 0.86, 0.88 and 0.90 are shown
by different marks in (a), and those for R = 0.99, 0.985 and 0.98 in (b).
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Figure 6. Plot of correlation function G(L/2) versus L. Here the slope of the best-fit straight line
of each corresponding R is the value of exponent η.

the moment ratio was used in [26], and the estimate of the KT temperature becomes higher
because of large corrections to FSS [38].

Next we consider the decay exponent η. We first look at the constant value of correlation
ratio R for different sizes and find the associate correlation function G(L/2). We give attention
to the power-law dependence of the correlation function on the system size, G(L/2) ∼ L−η,
which can be seen from equation (14) and D is set to be 2. We plot G(L/2) versus L for various
R on logarithmic scale in figure 6. The value of η is obtained as the slope of the best-fitted
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Figure 7. Decay exponent η of KT phase as a function of magnetic coefficient ratio R. Line is just
guide to the eyes.

line for each constant of correlation ratio. The multiplicative logarithmic corrections for the
KT transition [19, 40] were shown to be small compared to statistical errors.

We plot η thus determined with respect to the fixed correlation ratio R in figure 7. In
the KT phase, R is directly related to the temperature. We should note that the exponent η is
meaningful only in the temperature range T1 � T � T2 on the fixed line. We show the values
of R which give T1 and T2 by arrows in figure 7. As can be seen, the decay exponent η behaves
like a typical KT transition; that is, the exponent η continuously changes with the temperature
in the KT phase. Since η is almost constant for larger R in figure 7, the exponent at the lower
KT temperature T1 is estimated as

η1 = 0.13(1).

For smaller R (higher temperature) side, η depends on R due to corrections in figure 7. Using
the fact that the fitted value of b in equation (16) reflects on the difference from the transition
point, that is, L/ξ ∝ 1/b, we estimate the exponent η at the higher KT temperature T2 by
extrapolation. The obtained η and b are, for example, 0.310 and 1.76 for R = 0.86, 0.298 and
2.18 for R = 0.88, and 0.284 and 3.25 for R = 0.90. Plotting the η as a function of 1/b, and
extrapolating to 1/b → 0, we obtain

η2 = 0.25(1).

Of course, other dependences such as 1/bx are possible; such an ambiguity is included in
the error. In figure 7 we show the value of R which gives T2 by the arrow. The η at this R
is consistent with the estimated value, 0.25(1). For the unfrustrated six-state clock model,
the exponents η2 and η1 were predicted as 1/4 and 1/9 respectively [19], and they were
confirmed numerically [41]. The present results suggest that the exponents associated with
the KT transitions are universal even for the frustrated model, which the previous work [26]
failed to show.

3.2.2. Chiral phase transition. The temperature dependence of the chiral correlation ratio
was also plotted in figure 4(b). The existence of chiral phase transition can be clearly observed.
In the figure, there is a single crossing point which indicates the second-order phase transition;
it corresponds to the divergent peak in the specific heat plot. By using the FSS plot of chirality
correlation ratio, as shown in figure 8, we can estimate the critical temperature and exponent
ν of chiral ordering. The estimates are

Tc = 0.5194(4) and ν = 0.83(1).
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Figure 8. FSS plot of the ratio of the chirality correlation function, γ (L/2)/γ (L/4).

Our result exhibiting that the chiral transition occurs at slightly higher than T2 of KT transition is
consistent with most studies in favour of double transition scenario. Quite recently, Korshunov
[42] has discussed that the phase transition associated with the unbinding of vortex pairs takes
place at a lower temperature than the other phase transition associated with proliferation of
the Ising-type domain walls.

Our estimate for the exponent ν is consistent with the results by Lee and Lee [17] and by
Ozeki and Ito [11], but contradicts with the result by Olsson [7]; that is, the critical phenomena
are not governed by the Ising universality class. We have not observed an appreciable size
dependence of the estimated ν up to our maximum system size, L = 72. Olsson [7] argued
that corrections to the scaling are important in the fully frustrated XY model, and the data
are consistent with ν = 1. Noh et al also postulated that only for large enough system the
Ising-like behaviour is observed. However, using nonequilibrium relaxation study for large
enough systems up to L = 2000, Ozeki and Ito [11] recently obtained the ν = 0.83(2), which
suggests that the corrections to FSS are not so serious. Thus, more careful calculations will
be needed for the critical phenomena of chiral transition.

4. Concluding remarks

In summary, we have investigated the AF six-state clock model on the triangular lattice using
the Wang–Landau method combined with the broad histogram relation. The model is closely
related to the 2D fully frustrated XY model. We have found that the system possesses two
orderings, spin ordering and chiral ordering. The former undergoes the KT transition while
the latter indicates the second-order transition. We have also observed the lower temperature
KT transition due to the discrete symmetry of the clock model.

Our estimates of the higher KT temperature T2 and the critical temperature of chiral
ordering Tc, that is, T2 = 0.5154(8) and Tc = 0.5194(4), support the double transition
scenario. The lower KT temperature is estimated as T1 = 0.496(2). Two decay exponents
of KT transitions are estimated as η2 = 0.25(1) and η1 = 0.13(1), which suggests that the
exponents associated with the KT transitions are universal even for the frustrated model.

For the critical phenomena of the chiral transition, our estimate of the exponent ν, that is,
ν = 0.83(1), suggests that the model does not belong to the Ising universality class, but more
detailed study is still required.
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